Рассчитать высоту треугольника со сторонами 47, 43 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 43 + 16}{2}} \normalsize = 53}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53(53-47)(53-43)(53-16)}}{43}\normalsize = 15.9542342}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53(53-47)(53-43)(53-16)}}{47}\normalsize = 14.596427}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53(53-47)(53-43)(53-16)}}{16}\normalsize = 42.8770043}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 43 и 16 равна 15.9542342
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 43 и 16 равна 14.596427
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 43 и 16 равна 42.8770043
Ссылка на результат
?n1=47&n2=43&n3=16
Найти высоту треугольника со сторонами 60, 56 и 12
Найти высоту треугольника со сторонами 115, 91 и 49
Найти высоту треугольника со сторонами 102, 84 и 74
Найти высоту треугольника со сторонами 89, 77 и 23
Найти высоту треугольника со сторонами 93, 63 и 46
Найти высоту треугольника со сторонами 79, 65 и 19
Найти высоту треугольника со сторонами 115, 91 и 49
Найти высоту треугольника со сторонами 102, 84 и 74
Найти высоту треугольника со сторонами 89, 77 и 23
Найти высоту треугольника со сторонами 93, 63 и 46
Найти высоту треугольника со сторонами 79, 65 и 19