Рассчитать высоту треугольника со сторонами 48, 37 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 37 + 21}{2}} \normalsize = 53}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53(53-48)(53-37)(53-21)}}{37}\normalsize = 19.9106844}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53(53-48)(53-37)(53-21)}}{48}\normalsize = 15.3478192}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53(53-48)(53-37)(53-21)}}{21}\normalsize = 35.0807297}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 37 и 21 равна 19.9106844
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 37 и 21 равна 15.3478192
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 37 и 21 равна 35.0807297
Ссылка на результат
?n1=48&n2=37&n3=21
Найти высоту треугольника со сторонами 144, 137 и 121
Найти высоту треугольника со сторонами 69, 60 и 23
Найти высоту треугольника со сторонами 88, 83 и 66
Найти высоту треугольника со сторонами 101, 83 и 21
Найти высоту треугольника со сторонами 82, 63 и 61
Найти высоту треугольника со сторонами 113, 112 и 37
Найти высоту треугольника со сторонами 69, 60 и 23
Найти высоту треугольника со сторонами 88, 83 и 66
Найти высоту треугольника со сторонами 101, 83 и 21
Найти высоту треугольника со сторонами 82, 63 и 61
Найти высоту треугольника со сторонами 113, 112 и 37