Рассчитать высоту треугольника со сторонами 48, 41 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 41 + 27}{2}} \normalsize = 58}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58(58-48)(58-41)(58-27)}}{41}\normalsize = 26.9690373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58(58-48)(58-41)(58-27)}}{48}\normalsize = 23.0360527}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58(58-48)(58-41)(58-27)}}{27}\normalsize = 40.9529825}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 41 и 27 равна 26.9690373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 41 и 27 равна 23.0360527
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 41 и 27 равна 40.9529825
Ссылка на результат
?n1=48&n2=41&n3=27
Найти высоту треугольника со сторонами 137, 106 и 104
Найти высоту треугольника со сторонами 70, 58 и 19
Найти высоту треугольника со сторонами 126, 116 и 96
Найти высоту треугольника со сторонами 72, 68 и 51
Найти высоту треугольника со сторонами 56, 42 и 20
Найти высоту треугольника со сторонами 89, 80 и 15
Найти высоту треугольника со сторонами 70, 58 и 19
Найти высоту треугольника со сторонами 126, 116 и 96
Найти высоту треугольника со сторонами 72, 68 и 51
Найти высоту треугольника со сторонами 56, 42 и 20
Найти высоту треугольника со сторонами 89, 80 и 15