Рассчитать высоту треугольника со сторонами 48, 42 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 42 + 14}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-48)(52-42)(52-14)}}{42}\normalsize = 13.3876445}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-48)(52-42)(52-14)}}{48}\normalsize = 11.7141889}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-48)(52-42)(52-14)}}{14}\normalsize = 40.1629335}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 42 и 14 равна 13.3876445
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 42 и 14 равна 11.7141889
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 42 и 14 равна 40.1629335
Ссылка на результат
?n1=48&n2=42&n3=14
Найти высоту треугольника со сторонами 72, 63 и 36
Найти высоту треугольника со сторонами 67, 39 и 39
Найти высоту треугольника со сторонами 127, 85 и 83
Найти высоту треугольника со сторонами 88, 73 и 37
Найти высоту треугольника со сторонами 116, 60 и 59
Найти высоту треугольника со сторонами 148, 146 и 113
Найти высоту треугольника со сторонами 67, 39 и 39
Найти высоту треугольника со сторонами 127, 85 и 83
Найти высоту треугольника со сторонами 88, 73 и 37
Найти высоту треугольника со сторонами 116, 60 и 59
Найти высоту треугольника со сторонами 148, 146 и 113