Рассчитать высоту треугольника со сторонами 48, 45 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 45 + 43}{2}} \normalsize = 68}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68(68-48)(68-45)(68-43)}}{45}\normalsize = 39.3025617}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68(68-48)(68-45)(68-43)}}{48}\normalsize = 36.8461516}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68(68-48)(68-45)(68-43)}}{43}\normalsize = 41.1305879}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 45 и 43 равна 39.3025617
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 45 и 43 равна 36.8461516
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 45 и 43 равна 41.1305879
Ссылка на результат
?n1=48&n2=45&n3=43
Найти высоту треугольника со сторонами 147, 145 и 140
Найти высоту треугольника со сторонами 149, 126 и 78
Найти высоту треугольника со сторонами 87, 67 и 25
Найти высоту треугольника со сторонами 134, 108 и 83
Найти высоту треугольника со сторонами 136, 122 и 115
Найти высоту треугольника со сторонами 93, 86 и 17
Найти высоту треугольника со сторонами 149, 126 и 78
Найти высоту треугольника со сторонами 87, 67 и 25
Найти высоту треугольника со сторонами 134, 108 и 83
Найти высоту треугольника со сторонами 136, 122 и 115
Найти высоту треугольника со сторонами 93, 86 и 17