Рассчитать высоту треугольника со сторонами 48, 46 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 46 + 39}{2}} \normalsize = 66.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{66.5(66.5-48)(66.5-46)(66.5-39)}}{46}\normalsize = 36.2086329}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{66.5(66.5-48)(66.5-46)(66.5-39)}}{48}\normalsize = 34.6999399}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{66.5(66.5-48)(66.5-46)(66.5-39)}}{39}\normalsize = 42.7076183}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 46 и 39 равна 36.2086329
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 46 и 39 равна 34.6999399
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 46 и 39 равна 42.7076183
Ссылка на результат
?n1=48&n2=46&n3=39
Найти высоту треугольника со сторонами 112, 93 и 49
Найти высоту треугольника со сторонами 113, 102 и 62
Найти высоту треугольника со сторонами 89, 83 и 69
Найти высоту треугольника со сторонами 108, 102 и 36
Найти высоту треугольника со сторонами 57, 52 и 32
Найти высоту треугольника со сторонами 73, 72 и 27
Найти высоту треугольника со сторонами 113, 102 и 62
Найти высоту треугольника со сторонами 89, 83 и 69
Найти высоту треугольника со сторонами 108, 102 и 36
Найти высоту треугольника со сторонами 57, 52 и 32
Найти высоту треугольника со сторонами 73, 72 и 27