Рассчитать высоту треугольника со сторонами 48, 47 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 47 + 23}{2}} \normalsize = 59}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{59(59-48)(59-47)(59-23)}}{47}\normalsize = 22.5318245}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{59(59-48)(59-47)(59-23)}}{48}\normalsize = 22.0624115}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{59(59-48)(59-47)(59-23)}}{23}\normalsize = 46.0432935}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 47 и 23 равна 22.5318245
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 47 и 23 равна 22.0624115
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 47 и 23 равна 46.0432935
Ссылка на результат
?n1=48&n2=47&n3=23
Найти высоту треугольника со сторонами 120, 111 и 94
Найти высоту треугольника со сторонами 146, 120 и 111
Найти высоту треугольника со сторонами 66, 54 и 31
Найти высоту треугольника со сторонами 68, 63 и 17
Найти высоту треугольника со сторонами 144, 107 и 88
Найти высоту треугольника со сторонами 111, 96 и 75
Найти высоту треугольника со сторонами 146, 120 и 111
Найти высоту треугольника со сторонами 66, 54 и 31
Найти высоту треугольника со сторонами 68, 63 и 17
Найти высоту треугольника со сторонами 144, 107 и 88
Найти высоту треугольника со сторонами 111, 96 и 75