Рассчитать высоту треугольника со сторонами 48, 47 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 47 + 6}{2}} \normalsize = 50.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50.5(50.5-48)(50.5-47)(50.5-6)}}{47}\normalsize = 5.96707998}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50.5(50.5-48)(50.5-47)(50.5-6)}}{48}\normalsize = 5.84276581}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50.5(50.5-48)(50.5-47)(50.5-6)}}{6}\normalsize = 46.7421265}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 47 и 6 равна 5.96707998
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 47 и 6 равна 5.84276581
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 47 и 6 равна 46.7421265
Ссылка на результат
?n1=48&n2=47&n3=6
Найти высоту треугольника со сторонами 149, 115 и 72
Найти высоту треугольника со сторонами 79, 78 и 76
Найти высоту треугольника со сторонами 88, 87 и 9
Найти высоту треугольника со сторонами 126, 123 и 96
Найти высоту треугольника со сторонами 129, 128 и 117
Найти высоту треугольника со сторонами 94, 81 и 21
Найти высоту треугольника со сторонами 79, 78 и 76
Найти высоту треугольника со сторонами 88, 87 и 9
Найти высоту треугольника со сторонами 126, 123 и 96
Найти высоту треугольника со сторонами 129, 128 и 117
Найти высоту треугольника со сторонами 94, 81 и 21