Рассчитать высоту треугольника со сторонами 49, 27 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 27 + 25}{2}} \normalsize = 50.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50.5(50.5-49)(50.5-27)(50.5-25)}}{27}\normalsize = 15.781983}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50.5(50.5-49)(50.5-27)(50.5-25)}}{49}\normalsize = 8.69619472}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50.5(50.5-49)(50.5-27)(50.5-25)}}{25}\normalsize = 17.0445416}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 27 и 25 равна 15.781983
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 27 и 25 равна 8.69619472
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 27 и 25 равна 17.0445416
Ссылка на результат
?n1=49&n2=27&n3=25
Найти высоту треугольника со сторонами 75, 72 и 19
Найти высоту треугольника со сторонами 66, 39 и 32
Найти высоту треугольника со сторонами 123, 74 и 68
Найти высоту треугольника со сторонами 69, 61 и 23
Найти высоту треугольника со сторонами 86, 65 и 47
Найти высоту треугольника со сторонами 125, 101 и 55
Найти высоту треугольника со сторонами 66, 39 и 32
Найти высоту треугольника со сторонами 123, 74 и 68
Найти высоту треугольника со сторонами 69, 61 и 23
Найти высоту треугольника со сторонами 86, 65 и 47
Найти высоту треугольника со сторонами 125, 101 и 55