Рассчитать высоту треугольника со сторонами 49, 34 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 34 + 32}{2}} \normalsize = 57.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57.5(57.5-49)(57.5-34)(57.5-32)}}{34}\normalsize = 31.8345331}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57.5(57.5-49)(57.5-34)(57.5-32)}}{49}\normalsize = 22.0892679}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57.5(57.5-49)(57.5-34)(57.5-32)}}{32}\normalsize = 33.8241915}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 34 и 32 равна 31.8345331
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 34 и 32 равна 22.0892679
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 34 и 32 равна 33.8241915
Ссылка на результат
?n1=49&n2=34&n3=32
Найти высоту треугольника со сторонами 66, 66 и 9
Найти высоту треугольника со сторонами 145, 122 и 56
Найти высоту треугольника со сторонами 143, 130 и 104
Найти высоту треугольника со сторонами 127, 102 и 72
Найти высоту треугольника со сторонами 88, 86 и 7
Найти высоту треугольника со сторонами 125, 122 и 36
Найти высоту треугольника со сторонами 145, 122 и 56
Найти высоту треугольника со сторонами 143, 130 и 104
Найти высоту треугольника со сторонами 127, 102 и 72
Найти высоту треугольника со сторонами 88, 86 и 7
Найти высоту треугольника со сторонами 125, 122 и 36