Рассчитать высоту треугольника со сторонами 49, 35 и 20

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 35 + 20}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-49)(52-35)(52-20)}}{35}\normalsize = 16.6465293}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-49)(52-35)(52-20)}}{49}\normalsize = 11.8903781}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-49)(52-35)(52-20)}}{20}\normalsize = 29.1314263}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 35 и 20 равна 16.6465293
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 35 и 20 равна 11.8903781
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 35 и 20 равна 29.1314263
Ссылка на результат
?n1=49&n2=35&n3=20