Рассчитать высоту треугольника со сторонами 49, 41 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 41 + 10}{2}} \normalsize = 50}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50(50-49)(50-41)(50-10)}}{41}\normalsize = 6.5445892}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50(50-49)(50-41)(50-10)}}{49}\normalsize = 5.47608484}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50(50-49)(50-41)(50-10)}}{10}\normalsize = 26.8328157}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 41 и 10 равна 6.5445892
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 41 и 10 равна 5.47608484
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 41 и 10 равна 26.8328157
Ссылка на результат
?n1=49&n2=41&n3=10
Найти высоту треугольника со сторонами 84, 62 и 48
Найти высоту треугольника со сторонами 126, 119 и 82
Найти высоту треугольника со сторонами 70, 54 и 49
Найти высоту треугольника со сторонами 150, 130 и 65
Найти высоту треугольника со сторонами 133, 116 и 87
Найти высоту треугольника со сторонами 107, 86 и 65
Найти высоту треугольника со сторонами 126, 119 и 82
Найти высоту треугольника со сторонами 70, 54 и 49
Найти высоту треугольника со сторонами 150, 130 и 65
Найти высоту треугольника со сторонами 133, 116 и 87
Найти высоту треугольника со сторонами 107, 86 и 65