Рассчитать высоту треугольника со сторонами 49, 42 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 42 + 11}{2}} \normalsize = 51}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{51(51-49)(51-42)(51-11)}}{42}\normalsize = 9.12498253}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{51(51-49)(51-42)(51-11)}}{49}\normalsize = 7.82141359}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{51(51-49)(51-42)(51-11)}}{11}\normalsize = 34.8408424}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 42 и 11 равна 9.12498253
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 42 и 11 равна 7.82141359
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 42 и 11 равна 34.8408424
Ссылка на результат
?n1=49&n2=42&n3=11
Найти высоту треугольника со сторонами 105, 87 и 49
Найти высоту треугольника со сторонами 142, 111 и 84
Найти высоту треугольника со сторонами 112, 72 и 58
Найти высоту треугольника со сторонами 130, 118 и 68
Найти высоту треугольника со сторонами 136, 119 и 78
Найти высоту треугольника со сторонами 104, 71 и 48
Найти высоту треугольника со сторонами 142, 111 и 84
Найти высоту треугольника со сторонами 112, 72 и 58
Найти высоту треугольника со сторонами 130, 118 и 68
Найти высоту треугольника со сторонами 136, 119 и 78
Найти высоту треугольника со сторонами 104, 71 и 48