Рассчитать высоту треугольника со сторонами 49, 43 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 43 + 30}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-49)(61-43)(61-30)}}{43}\normalsize = 29.725843}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-49)(61-43)(61-30)}}{49}\normalsize = 26.0859439}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-49)(61-43)(61-30)}}{30}\normalsize = 42.6070417}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 43 и 30 равна 29.725843
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 43 и 30 равна 26.0859439
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 43 и 30 равна 42.6070417
Ссылка на результат
?n1=49&n2=43&n3=30
Найти высоту треугольника со сторонами 111, 109 и 64
Найти высоту треугольника со сторонами 83, 74 и 39
Найти высоту треугольника со сторонами 113, 77 и 73
Найти высоту треугольника со сторонами 71, 65 и 64
Найти высоту треугольника со сторонами 132, 92 и 66
Найти высоту треугольника со сторонами 106, 96 и 32
Найти высоту треугольника со сторонами 83, 74 и 39
Найти высоту треугольника со сторонами 113, 77 и 73
Найти высоту треугольника со сторонами 71, 65 и 64
Найти высоту треугольника со сторонами 132, 92 и 66
Найти высоту треугольника со сторонами 106, 96 и 32