Рассчитать высоту треугольника со сторонами 49, 48 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 48 + 13}{2}} \normalsize = 55}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{55(55-49)(55-48)(55-13)}}{48}\normalsize = 12.9783474}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{55(55-49)(55-48)(55-13)}}{49}\normalsize = 12.7134831}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{55(55-49)(55-48)(55-13)}}{13}\normalsize = 47.9200518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 48 и 13 равна 12.9783474
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 48 и 13 равна 12.7134831
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 48 и 13 равна 47.9200518
Ссылка на результат
?n1=49&n2=48&n3=13
Найти высоту треугольника со сторонами 140, 119 и 51
Найти высоту треугольника со сторонами 144, 126 и 72
Найти высоту треугольника со сторонами 118, 64 и 61
Найти высоту треугольника со сторонами 71, 59 и 33
Найти высоту треугольника со сторонами 82, 60 и 51
Найти высоту треугольника со сторонами 53, 45 и 38
Найти высоту треугольника со сторонами 144, 126 и 72
Найти высоту треугольника со сторонами 118, 64 и 61
Найти высоту треугольника со сторонами 71, 59 и 33
Найти высоту треугольника со сторонами 82, 60 и 51
Найти высоту треугольника со сторонами 53, 45 и 38