Рассчитать высоту треугольника со сторонами 50, 31 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 31 + 30}{2}} \normalsize = 55.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{55.5(55.5-50)(55.5-31)(55.5-30)}}{31}\normalsize = 28.1740493}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{55.5(55.5-50)(55.5-31)(55.5-30)}}{50}\normalsize = 17.4679106}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{55.5(55.5-50)(55.5-31)(55.5-30)}}{30}\normalsize = 29.1131843}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 31 и 30 равна 28.1740493
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 31 и 30 равна 17.4679106
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 31 и 30 равна 29.1131843
Ссылка на результат
?n1=50&n2=31&n3=30
Найти высоту треугольника со сторонами 144, 131 и 49
Найти высоту треугольника со сторонами 114, 75 и 51
Найти высоту треугольника со сторонами 105, 105 и 53
Найти высоту треугольника со сторонами 129, 115 и 50
Найти высоту треугольника со сторонами 89, 51 и 46
Найти высоту треугольника со сторонами 133, 129 и 100
Найти высоту треугольника со сторонами 114, 75 и 51
Найти высоту треугольника со сторонами 105, 105 и 53
Найти высоту треугольника со сторонами 129, 115 и 50
Найти высоту треугольника со сторонами 89, 51 и 46
Найти высоту треугольника со сторонами 133, 129 и 100