Рассчитать высоту треугольника со сторонами 50, 36 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 36 + 19}{2}} \normalsize = 52.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52.5(52.5-50)(52.5-36)(52.5-19)}}{36}\normalsize = 14.9637873}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52.5(52.5-50)(52.5-36)(52.5-19)}}{50}\normalsize = 10.7739269}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52.5(52.5-50)(52.5-36)(52.5-19)}}{19}\normalsize = 28.3524391}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 36 и 19 равна 14.9637873
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 36 и 19 равна 10.7739269
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 36 и 19 равна 28.3524391
Ссылка на результат
?n1=50&n2=36&n3=19
Найти высоту треугольника со сторонами 146, 132 и 72
Найти высоту треугольника со сторонами 139, 89 и 88
Найти высоту треугольника со сторонами 103, 73 и 60
Найти высоту треугольника со сторонами 141, 82 и 68
Найти высоту треугольника со сторонами 81, 71 и 24
Найти высоту треугольника со сторонами 104, 83 и 45
Найти высоту треугольника со сторонами 139, 89 и 88
Найти высоту треугольника со сторонами 103, 73 и 60
Найти высоту треугольника со сторонами 141, 82 и 68
Найти высоту треугольника со сторонами 81, 71 и 24
Найти высоту треугольника со сторонами 104, 83 и 45