Рассчитать высоту треугольника со сторонами 50, 40 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 40 + 19}{2}} \normalsize = 54.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54.5(54.5-50)(54.5-40)(54.5-19)}}{40}\normalsize = 17.7653059}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54.5(54.5-50)(54.5-40)(54.5-19)}}{50}\normalsize = 14.2122447}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54.5(54.5-50)(54.5-40)(54.5-19)}}{19}\normalsize = 37.400644}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 40 и 19 равна 17.7653059
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 40 и 19 равна 14.2122447
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 40 и 19 равна 37.400644
Ссылка на результат
?n1=50&n2=40&n3=19
Найти высоту треугольника со сторонами 126, 103 и 49
Найти высоту треугольника со сторонами 111, 79 и 44
Найти высоту треугольника со сторонами 139, 138 и 126
Найти высоту треугольника со сторонами 109, 64 и 57
Найти высоту треугольника со сторонами 49, 43 и 20
Найти высоту треугольника со сторонами 125, 91 и 52
Найти высоту треугольника со сторонами 111, 79 и 44
Найти высоту треугольника со сторонами 139, 138 и 126
Найти высоту треугольника со сторонами 109, 64 и 57
Найти высоту треугольника со сторонами 49, 43 и 20
Найти высоту треугольника со сторонами 125, 91 и 52