Рассчитать высоту треугольника со сторонами 50, 42 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 42 + 38}{2}} \normalsize = 65}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{65(65-50)(65-42)(65-38)}}{42}\normalsize = 37.0534639}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{65(65-50)(65-42)(65-38)}}{50}\normalsize = 31.1249096}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{65(65-50)(65-42)(65-38)}}{38}\normalsize = 40.9538285}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 42 и 38 равна 37.0534639
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 42 и 38 равна 31.1249096
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 42 и 38 равна 40.9538285
Ссылка на результат
?n1=50&n2=42&n3=38
Найти высоту треугольника со сторонами 113, 89 и 26
Найти высоту треугольника со сторонами 130, 124 и 85
Найти высоту треугольника со сторонами 133, 122 и 25
Найти высоту треугольника со сторонами 146, 145 и 55
Найти высоту треугольника со сторонами 133, 122 и 96
Найти высоту треугольника со сторонами 94, 81 и 73
Найти высоту треугольника со сторонами 130, 124 и 85
Найти высоту треугольника со сторонами 133, 122 и 25
Найти высоту треугольника со сторонами 146, 145 и 55
Найти высоту треугольника со сторонами 133, 122 и 96
Найти высоту треугольника со сторонами 94, 81 и 73