Рассчитать высоту треугольника со сторонами 50, 47 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 47 + 40}{2}} \normalsize = 68.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68.5(68.5-50)(68.5-47)(68.5-40)}}{47}\normalsize = 37.4977274}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68.5(68.5-50)(68.5-47)(68.5-40)}}{50}\normalsize = 35.2478638}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68.5(68.5-50)(68.5-47)(68.5-40)}}{40}\normalsize = 44.0598297}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 47 и 40 равна 37.4977274
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 47 и 40 равна 35.2478638
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 47 и 40 равна 44.0598297
Ссылка на результат
?n1=50&n2=47&n3=40