Рассчитать высоту треугольника со сторонами 50, 48 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 48 + 13}{2}} \normalsize = 55.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{55.5(55.5-50)(55.5-48)(55.5-13)}}{48}\normalsize = 12.9969573}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{55.5(55.5-50)(55.5-48)(55.5-13)}}{50}\normalsize = 12.477079}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{55.5(55.5-50)(55.5-48)(55.5-13)}}{13}\normalsize = 47.9887653}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 48 и 13 равна 12.9969573
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 48 и 13 равна 12.477079
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 48 и 13 равна 47.9887653
Ссылка на результат
?n1=50&n2=48&n3=13
Найти высоту треугольника со сторонами 116, 92 и 29
Найти высоту треугольника со сторонами 142, 115 и 111
Найти высоту треугольника со сторонами 115, 105 и 22
Найти высоту треугольника со сторонами 100, 93 и 27
Найти высоту треугольника со сторонами 125, 98 и 96
Найти высоту треугольника со сторонами 118, 84 и 46
Найти высоту треугольника со сторонами 142, 115 и 111
Найти высоту треугольника со сторонами 115, 105 и 22
Найти высоту треугольника со сторонами 100, 93 и 27
Найти высоту треугольника со сторонами 125, 98 и 96
Найти высоту треугольника со сторонами 118, 84 и 46