Рассчитать высоту треугольника со сторонами 51, 35 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 35 + 19}{2}} \normalsize = 52.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52.5(52.5-51)(52.5-35)(52.5-19)}}{35}\normalsize = 12.2780292}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52.5(52.5-51)(52.5-35)(52.5-19)}}{51}\normalsize = 8.42609844}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52.5(52.5-51)(52.5-35)(52.5-19)}}{19}\normalsize = 22.6174221}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 35 и 19 равна 12.2780292
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 35 и 19 равна 8.42609844
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 35 и 19 равна 22.6174221
Ссылка на результат
?n1=51&n2=35&n3=19
Найти высоту треугольника со сторонами 105, 104 и 38
Найти высоту треугольника со сторонами 138, 117 и 88
Найти высоту треугольника со сторонами 146, 140 и 60
Найти высоту треугольника со сторонами 18, 11 и 11
Найти высоту треугольника со сторонами 135, 107 и 52
Найти высоту треугольника со сторонами 139, 134 и 74
Найти высоту треугольника со сторонами 138, 117 и 88
Найти высоту треугольника со сторонами 146, 140 и 60
Найти высоту треугольника со сторонами 18, 11 и 11
Найти высоту треугольника со сторонами 135, 107 и 52
Найти высоту треугольника со сторонами 139, 134 и 74