Рассчитать высоту треугольника со сторонами 51, 38 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 38 + 15}{2}} \normalsize = 52}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52(52-51)(52-38)(52-15)}}{38}\normalsize = 8.63799505}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52(52-51)(52-38)(52-15)}}{51}\normalsize = 6.43615317}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52(52-51)(52-38)(52-15)}}{15}\normalsize = 21.8829208}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 38 и 15 равна 8.63799505
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 38 и 15 равна 6.43615317
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 38 и 15 равна 21.8829208
Ссылка на результат
?n1=51&n2=38&n3=15
Найти высоту треугольника со сторонами 134, 93 и 84
Найти высоту треугольника со сторонами 87, 57 и 36
Найти высоту треугольника со сторонами 120, 109 и 32
Найти высоту треугольника со сторонами 127, 119 и 15
Найти высоту треугольника со сторонами 94, 89 и 78
Найти высоту треугольника со сторонами 120, 119 и 55
Найти высоту треугольника со сторонами 87, 57 и 36
Найти высоту треугольника со сторонами 120, 109 и 32
Найти высоту треугольника со сторонами 127, 119 и 15
Найти высоту треугольника со сторонами 94, 89 и 78
Найти высоту треугольника со сторонами 120, 119 и 55