Рассчитать высоту треугольника со сторонами 51, 38 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 38 + 33}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-51)(61-38)(61-33)}}{38}\normalsize = 32.9878682}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-51)(61-38)(61-33)}}{51}\normalsize = 24.5791959}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-51)(61-38)(61-33)}}{33}\normalsize = 37.98603}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 38 и 33 равна 32.9878682
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 38 и 33 равна 24.5791959
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 38 и 33 равна 37.98603
Ссылка на результат
?n1=51&n2=38&n3=33
Найти высоту треугольника со сторонами 134, 134 и 133
Найти высоту треугольника со сторонами 65, 57 и 57
Найти высоту треугольника со сторонами 138, 113 и 83
Найти высоту треугольника со сторонами 140, 82 и 71
Найти высоту треугольника со сторонами 112, 74 и 71
Найти высоту треугольника со сторонами 138, 119 и 25
Найти высоту треугольника со сторонами 65, 57 и 57
Найти высоту треугольника со сторонами 138, 113 и 83
Найти высоту треугольника со сторонами 140, 82 и 71
Найти высоту треугольника со сторонами 112, 74 и 71
Найти высоту треугольника со сторонами 138, 119 и 25