Рассчитать высоту треугольника со сторонами 51, 39 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 39 + 24}{2}} \normalsize = 57}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57(57-51)(57-39)(57-24)}}{39}\normalsize = 23.1138167}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57(57-51)(57-39)(57-24)}}{51}\normalsize = 17.6752716}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57(57-51)(57-39)(57-24)}}{24}\normalsize = 37.5599521}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 39 и 24 равна 23.1138167
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 39 и 24 равна 17.6752716
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 39 и 24 равна 37.5599521
Ссылка на результат
?n1=51&n2=39&n3=24
Найти высоту треугольника со сторонами 147, 147 и 121
Найти высоту треугольника со сторонами 106, 100 и 84
Найти высоту треугольника со сторонами 126, 116 и 27
Найти высоту треугольника со сторонами 108, 63 и 62
Найти высоту треугольника со сторонами 89, 88 и 61
Найти высоту треугольника со сторонами 130, 94 и 47
Найти высоту треугольника со сторонами 106, 100 и 84
Найти высоту треугольника со сторонами 126, 116 и 27
Найти высоту треугольника со сторонами 108, 63 и 62
Найти высоту треугольника со сторонами 89, 88 и 61
Найти высоту треугольника со сторонами 130, 94 и 47