Рассчитать высоту треугольника со сторонами 51, 40 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 40 + 12}{2}} \normalsize = 51.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{51.5(51.5-51)(51.5-40)(51.5-12)}}{40}\normalsize = 5.40761905}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{51.5(51.5-51)(51.5-40)(51.5-12)}}{51}\normalsize = 4.24126984}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{51.5(51.5-51)(51.5-40)(51.5-12)}}{12}\normalsize = 18.0253968}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 40 и 12 равна 5.40761905
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 40 и 12 равна 4.24126984
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 40 и 12 равна 18.0253968
Ссылка на результат
?n1=51&n2=40&n3=12
Найти высоту треугольника со сторонами 150, 110 и 90
Найти высоту треугольника со сторонами 86, 75 и 41
Найти высоту треугольника со сторонами 146, 129 и 110
Найти высоту треугольника со сторонами 127, 118 и 115
Найти высоту треугольника со сторонами 116, 107 и 76
Найти высоту треугольника со сторонами 115, 110 и 30
Найти высоту треугольника со сторонами 86, 75 и 41
Найти высоту треугольника со сторонами 146, 129 и 110
Найти высоту треугольника со сторонами 127, 118 и 115
Найти высоту треугольника со сторонами 116, 107 и 76
Найти высоту треугольника со сторонами 115, 110 и 30