Рассчитать высоту треугольника со сторонами 51, 42 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 42 + 15}{2}} \normalsize = 54}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54(54-51)(54-42)(54-15)}}{42}\normalsize = 13.1117645}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54(54-51)(54-42)(54-15)}}{51}\normalsize = 10.7979237}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54(54-51)(54-42)(54-15)}}{15}\normalsize = 36.7129405}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 42 и 15 равна 13.1117645
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 42 и 15 равна 10.7979237
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 42 и 15 равна 36.7129405
Ссылка на результат
?n1=51&n2=42&n3=15
Найти высоту треугольника со сторонами 101, 81 и 78
Найти высоту треугольника со сторонами 114, 85 и 75
Найти высоту треугольника со сторонами 122, 119 и 28
Найти высоту треугольника со сторонами 96, 54 и 44
Найти высоту треугольника со сторонами 133, 119 и 65
Найти высоту треугольника со сторонами 61, 59 и 21
Найти высоту треугольника со сторонами 114, 85 и 75
Найти высоту треугольника со сторонами 122, 119 и 28
Найти высоту треугольника со сторонами 96, 54 и 44
Найти высоту треугольника со сторонами 133, 119 и 65
Найти высоту треугольника со сторонами 61, 59 и 21