Рассчитать высоту треугольника со сторонами 51, 46 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 46 + 17}{2}} \normalsize = 57}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57(57-51)(57-46)(57-17)}}{46}\normalsize = 16.865979}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57(57-51)(57-46)(57-17)}}{51}\normalsize = 15.2124516}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57(57-51)(57-46)(57-17)}}{17}\normalsize = 45.6373549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 46 и 17 равна 16.865979
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 46 и 17 равна 15.2124516
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 46 и 17 равна 45.6373549
Ссылка на результат
?n1=51&n2=46&n3=17
Найти высоту треугольника со сторонами 111, 104 и 15
Найти высоту треугольника со сторонами 136, 132 и 40
Найти высоту треугольника со сторонами 142, 138 и 54
Найти высоту треугольника со сторонами 127, 90 и 56
Найти высоту треугольника со сторонами 137, 136 и 31
Найти высоту треугольника со сторонами 88, 61 и 45
Найти высоту треугольника со сторонами 136, 132 и 40
Найти высоту треугольника со сторонами 142, 138 и 54
Найти высоту треугольника со сторонами 127, 90 и 56
Найти высоту треугольника со сторонами 137, 136 и 31
Найти высоту треугольника со сторонами 88, 61 и 45