Рассчитать высоту треугольника со сторонами 51, 50 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 50 + 21}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-51)(61-50)(61-21)}}{50}\normalsize = 20.7229342}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-51)(61-50)(61-21)}}{51}\normalsize = 20.3166021}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-51)(61-50)(61-21)}}{21}\normalsize = 49.3403194}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 50 и 21 равна 20.7229342
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 50 и 21 равна 20.3166021
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 50 и 21 равна 49.3403194
Ссылка на результат
?n1=51&n2=50&n3=21
Найти высоту треугольника со сторонами 121, 73 и 70
Найти высоту треугольника со сторонами 107, 102 и 29
Найти высоту треугольника со сторонами 107, 104 и 10
Найти высоту треугольника со сторонами 147, 100 и 100
Найти высоту треугольника со сторонами 148, 148 и 59
Найти высоту треугольника со сторонами 98, 89 и 66
Найти высоту треугольника со сторонами 107, 102 и 29
Найти высоту треугольника со сторонами 107, 104 и 10
Найти высоту треугольника со сторонами 147, 100 и 100
Найти высоту треугольника со сторонами 148, 148 и 59
Найти высоту треугольника со сторонами 98, 89 и 66