Рассчитать высоту треугольника со сторонами 52, 35 и 25

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 35 + 25}{2}} \normalsize = 56}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{56(56-52)(56-35)(56-25)}}{35}\normalsize = 21.8210907}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{56(56-52)(56-35)(56-25)}}{52}\normalsize = 14.6872726}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{56(56-52)(56-35)(56-25)}}{25}\normalsize = 30.549527}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 35 и 25 равна 21.8210907
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 35 и 25 равна 14.6872726
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 35 и 25 равна 30.549527
Ссылка на результат
?n1=52&n2=35&n3=25