Рассчитать высоту треугольника со сторонами 52, 41 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 41 + 24}{2}} \normalsize = 58.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58.5(58.5-52)(58.5-41)(58.5-24)}}{41}\normalsize = 23.3727235}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58.5(58.5-52)(58.5-41)(58.5-24)}}{52}\normalsize = 18.4284936}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58.5(58.5-52)(58.5-41)(58.5-24)}}{24}\normalsize = 39.9284027}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 41 и 24 равна 23.3727235
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 41 и 24 равна 18.4284936
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 41 и 24 равна 39.9284027
Ссылка на результат
?n1=52&n2=41&n3=24
Найти высоту треугольника со сторонами 150, 92 и 89
Найти высоту треугольника со сторонами 125, 110 и 55
Найти высоту треугольника со сторонами 132, 91 и 85
Найти высоту треугольника со сторонами 106, 96 и 87
Найти высоту треугольника со сторонами 150, 144 и 19
Найти высоту треугольника со сторонами 109, 94 и 38
Найти высоту треугольника со сторонами 125, 110 и 55
Найти высоту треугольника со сторонами 132, 91 и 85
Найти высоту треугольника со сторонами 106, 96 и 87
Найти высоту треугольника со сторонами 150, 144 и 19
Найти высоту треугольника со сторонами 109, 94 и 38