Рассчитать высоту треугольника со сторонами 52, 42 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 42 + 21}{2}} \normalsize = 57.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57.5(57.5-52)(57.5-42)(57.5-21)}}{42}\normalsize = 20.1422626}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57.5(57.5-52)(57.5-42)(57.5-21)}}{52}\normalsize = 16.2687506}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57.5(57.5-52)(57.5-42)(57.5-21)}}{21}\normalsize = 40.2845252}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 42 и 21 равна 20.1422626
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 42 и 21 равна 16.2687506
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 42 и 21 равна 40.2845252
Ссылка на результат
?n1=52&n2=42&n3=21
Найти высоту треугольника со сторонами 126, 98 и 70
Найти высоту треугольника со сторонами 80, 67 и 53
Найти высоту треугольника со сторонами 138, 97 и 60
Найти высоту треугольника со сторонами 101, 89 и 70
Найти высоту треугольника со сторонами 105, 60 и 60
Найти высоту треугольника со сторонами 117, 102 и 96
Найти высоту треугольника со сторонами 80, 67 и 53
Найти высоту треугольника со сторонами 138, 97 и 60
Найти высоту треугольника со сторонами 101, 89 и 70
Найти высоту треугольника со сторонами 105, 60 и 60
Найти высоту треугольника со сторонами 117, 102 и 96