Рассчитать высоту треугольника со сторонами 52, 46 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 46 + 15}{2}} \normalsize = 56.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{56.5(56.5-52)(56.5-46)(56.5-15)}}{46}\normalsize = 14.4717597}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{56.5(56.5-52)(56.5-46)(56.5-15)}}{52}\normalsize = 12.8019413}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{56.5(56.5-52)(56.5-46)(56.5-15)}}{15}\normalsize = 44.3800631}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 46 и 15 равна 14.4717597
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 46 и 15 равна 12.8019413
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 46 и 15 равна 44.3800631
Ссылка на результат
?n1=52&n2=46&n3=15
Найти высоту треугольника со сторонами 90, 62 и 39
Найти высоту треугольника со сторонами 120, 111 и 106
Найти высоту треугольника со сторонами 146, 137 и 125
Найти высоту треугольника со сторонами 115, 80 и 65
Найти высоту треугольника со сторонами 143, 106 и 40
Найти высоту треугольника со сторонами 134, 77 и 77
Найти высоту треугольника со сторонами 120, 111 и 106
Найти высоту треугольника со сторонами 146, 137 и 125
Найти высоту треугольника со сторонами 115, 80 и 65
Найти высоту треугольника со сторонами 143, 106 и 40
Найти высоту треугольника со сторонами 134, 77 и 77