Рассчитать высоту треугольника со сторонами 52, 47 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 47 + 35}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-52)(67-47)(67-35)}}{47}\normalsize = 34.1275535}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-52)(67-47)(67-35)}}{52}\normalsize = 30.8460579}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-52)(67-47)(67-35)}}{35}\normalsize = 45.8284289}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 47 и 35 равна 34.1275535
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 47 и 35 равна 30.8460579
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 47 и 35 равна 45.8284289
Ссылка на результат
?n1=52&n2=47&n3=35
Найти высоту треугольника со сторонами 144, 114 и 43
Найти высоту треугольника со сторонами 122, 71 и 63
Найти высоту треугольника со сторонами 107, 86 и 50
Найти высоту треугольника со сторонами 110, 63 и 63
Найти высоту треугольника со сторонами 143, 94 и 71
Найти высоту треугольника со сторонами 120, 94 и 67
Найти высоту треугольника со сторонами 122, 71 и 63
Найти высоту треугольника со сторонами 107, 86 и 50
Найти высоту треугольника со сторонами 110, 63 и 63
Найти высоту треугольника со сторонами 143, 94 и 71
Найти высоту треугольника со сторонами 120, 94 и 67