Рассчитать высоту треугольника со сторонами 52, 49 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 49 + 43}{2}} \normalsize = 72}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{72(72-52)(72-49)(72-43)}}{49}\normalsize = 40.0016659}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{72(72-52)(72-49)(72-43)}}{52}\normalsize = 37.6938775}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{72(72-52)(72-49)(72-43)}}{43}\normalsize = 45.5832937}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 49 и 43 равна 40.0016659
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 49 и 43 равна 37.6938775
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 49 и 43 равна 45.5832937
Ссылка на результат
?n1=52&n2=49&n3=43
Найти высоту треугольника со сторонами 136, 118 и 109
Найти высоту треугольника со сторонами 144, 133 и 13
Найти высоту треугольника со сторонами 134, 93 и 49
Найти высоту треугольника со сторонами 123, 101 и 90
Найти высоту треугольника со сторонами 127, 118 и 45
Найти высоту треугольника со сторонами 135, 102 и 69
Найти высоту треугольника со сторонами 144, 133 и 13
Найти высоту треугольника со сторонами 134, 93 и 49
Найти высоту треугольника со сторонами 123, 101 и 90
Найти высоту треугольника со сторонами 127, 118 и 45
Найти высоту треугольника со сторонами 135, 102 и 69