Рассчитать высоту треугольника со сторонами 52, 49 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 49 + 49}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-52)(75-49)(75-49)}}{49}\normalsize = 44.0759634}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-52)(75-49)(75-49)}}{52}\normalsize = 41.5331193}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-52)(75-49)(75-49)}}{49}\normalsize = 44.0759634}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 49 и 49 равна 44.0759634
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 49 и 49 равна 41.5331193
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 49 и 49 равна 44.0759634
Ссылка на результат
?n1=52&n2=49&n3=49
Найти высоту треугольника со сторонами 124, 95 и 93
Найти высоту треугольника со сторонами 115, 89 и 32
Найти высоту треугольника со сторонами 125, 122 и 77
Найти высоту треугольника со сторонами 146, 119 и 55
Найти высоту треугольника со сторонами 103, 70 и 47
Найти высоту треугольника со сторонами 132, 113 и 27
Найти высоту треугольника со сторонами 115, 89 и 32
Найти высоту треугольника со сторонами 125, 122 и 77
Найти высоту треугольника со сторонами 146, 119 и 55
Найти высоту треугольника со сторонами 103, 70 и 47
Найти высоту треугольника со сторонами 132, 113 и 27