Рассчитать высоту треугольника со сторонами 52, 49 и 6

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 49 + 6}{2}} \normalsize = 53.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53.5(53.5-52)(53.5-49)(53.5-6)}}{49}\normalsize = 5.3457605}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53.5(53.5-52)(53.5-49)(53.5-6)}}{52}\normalsize = 5.03735124}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53.5(53.5-52)(53.5-49)(53.5-6)}}{6}\normalsize = 43.6570441}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 49 и 6 равна 5.3457605
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 49 и 6 равна 5.03735124
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 49 и 6 равна 43.6570441
Ссылка на результат
?n1=52&n2=49&n3=6