Рассчитать высоту треугольника со сторонами 52, 50 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 50 + 34}{2}} \normalsize = 68}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68(68-52)(68-50)(68-34)}}{50}\normalsize = 32.64}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68(68-52)(68-50)(68-34)}}{52}\normalsize = 31.3846154}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68(68-52)(68-50)(68-34)}}{34}\normalsize = 48}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 50 и 34 равна 32.64
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 50 и 34 равна 31.3846154
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 50 и 34 равна 48
Ссылка на результат
?n1=52&n2=50&n3=34
Найти высоту треугольника со сторонами 149, 121 и 83
Найти высоту треугольника со сторонами 119, 106 и 80
Найти высоту треугольника со сторонами 131, 97 и 60
Найти высоту треугольника со сторонами 93, 84 и 11
Найти высоту треугольника со сторонами 89, 70 и 62
Найти высоту треугольника со сторонами 95, 83 и 50
Найти высоту треугольника со сторонами 119, 106 и 80
Найти высоту треугольника со сторонами 131, 97 и 60
Найти высоту треугольника со сторонами 93, 84 и 11
Найти высоту треугольника со сторонами 89, 70 и 62
Найти высоту треугольника со сторонами 95, 83 и 50