Рассчитать высоту треугольника со сторонами 52, 51 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 51 + 17}{2}} \normalsize = 60}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{60(60-52)(60-51)(60-17)}}{51}\normalsize = 16.9019153}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{60(60-52)(60-51)(60-17)}}{52}\normalsize = 16.5768785}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{60(60-52)(60-51)(60-17)}}{17}\normalsize = 50.7057459}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 51 и 17 равна 16.9019153
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 51 и 17 равна 16.5768785
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 51 и 17 равна 50.7057459
Ссылка на результат
?n1=52&n2=51&n3=17
Найти высоту треугольника со сторонами 133, 120 и 22
Найти высоту треугольника со сторонами 137, 116 и 48
Найти высоту треугольника со сторонами 87, 60 и 43
Найти высоту треугольника со сторонами 111, 80 и 64
Найти высоту треугольника со сторонами 138, 126 и 58
Найти высоту треугольника со сторонами 116, 103 и 29
Найти высоту треугольника со сторонами 137, 116 и 48
Найти высоту треугольника со сторонами 87, 60 и 43
Найти высоту треугольника со сторонами 111, 80 и 64
Найти высоту треугольника со сторонами 138, 126 и 58
Найти высоту треугольника со сторонами 116, 103 и 29