Рассчитать высоту треугольника со сторонами 52, 51 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 51 + 21}{2}} \normalsize = 62}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{62(62-52)(62-51)(62-21)}}{51}\normalsize = 20.7369049}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{62(62-52)(62-51)(62-21)}}{52}\normalsize = 20.3381182}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{62(62-52)(62-51)(62-21)}}{21}\normalsize = 50.3610547}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 51 и 21 равна 20.7369049
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 51 и 21 равна 20.3381182
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 51 и 21 равна 50.3610547
Ссылка на результат
?n1=52&n2=51&n3=21
Найти высоту треугольника со сторонами 136, 128 и 118
Найти высоту треугольника со сторонами 82, 68 и 56
Найти высоту треугольника со сторонами 149, 148 и 101
Найти высоту треугольника со сторонами 145, 120 и 43
Найти высоту треугольника со сторонами 142, 128 и 112
Найти высоту треугольника со сторонами 123, 112 и 109
Найти высоту треугольника со сторонами 82, 68 и 56
Найти высоту треугольника со сторонами 149, 148 и 101
Найти высоту треугольника со сторонами 145, 120 и 43
Найти высоту треугольника со сторонами 142, 128 и 112
Найти высоту треугольника со сторонами 123, 112 и 109