Рассчитать высоту треугольника со сторонами 53, 38 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{53 + 38 + 32}{2}} \normalsize = 61.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61.5(61.5-53)(61.5-38)(61.5-32)}}{38}\normalsize = 31.6838799}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61.5(61.5-53)(61.5-38)(61.5-32)}}{53}\normalsize = 22.7167441}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61.5(61.5-53)(61.5-38)(61.5-32)}}{32}\normalsize = 37.6246074}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 53, 38 и 32 равна 31.6838799
Высота треугольника опущенная с вершины A на сторону BC со сторонами 53, 38 и 32 равна 22.7167441
Высота треугольника опущенная с вершины C на сторону AB со сторонами 53, 38 и 32 равна 37.6246074
Ссылка на результат
?n1=53&n2=38&n3=32
Найти высоту треугольника со сторонами 137, 102 и 85
Найти высоту треугольника со сторонами 60, 60 и 6
Найти высоту треугольника со сторонами 142, 140 и 130
Найти высоту треугольника со сторонами 130, 121 и 24
Найти высоту треугольника со сторонами 126, 114 и 89
Найти высоту треугольника со сторонами 132, 105 и 70
Найти высоту треугольника со сторонами 60, 60 и 6
Найти высоту треугольника со сторонами 142, 140 и 130
Найти высоту треугольника со сторонами 130, 121 и 24
Найти высоту треугольника со сторонами 126, 114 и 89
Найти высоту треугольника со сторонами 132, 105 и 70