Рассчитать высоту треугольника со сторонами 53, 39 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{53 + 39 + 19}{2}} \normalsize = 55.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{55.5(55.5-53)(55.5-39)(55.5-19)}}{39}\normalsize = 14.8241667}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{55.5(55.5-53)(55.5-39)(55.5-19)}}{53}\normalsize = 10.9083491}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{55.5(55.5-53)(55.5-39)(55.5-19)}}{19}\normalsize = 30.4285526}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 53, 39 и 19 равна 14.8241667
Высота треугольника опущенная с вершины A на сторону BC со сторонами 53, 39 и 19 равна 10.9083491
Высота треугольника опущенная с вершины C на сторону AB со сторонами 53, 39 и 19 равна 30.4285526
Ссылка на результат
?n1=53&n2=39&n3=19
Найти высоту треугольника со сторонами 67, 57 и 37
Найти высоту треугольника со сторонами 143, 124 и 58
Найти высоту треугольника со сторонами 145, 102 и 79
Найти высоту треугольника со сторонами 131, 88 и 84
Найти высоту треугольника со сторонами 118, 109 и 21
Найти высоту треугольника со сторонами 125, 87 и 70
Найти высоту треугольника со сторонами 143, 124 и 58
Найти высоту треугольника со сторонами 145, 102 и 79
Найти высоту треугольника со сторонами 131, 88 и 84
Найти высоту треугольника со сторонами 118, 109 и 21
Найти высоту треугольника со сторонами 125, 87 и 70