Рассчитать высоту треугольника со сторонами 53, 45 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{53 + 45 + 9}{2}} \normalsize = 53.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53.5(53.5-53)(53.5-45)(53.5-9)}}{45}\normalsize = 4.47063119}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53.5(53.5-53)(53.5-45)(53.5-9)}}{53}\normalsize = 3.79581893}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53.5(53.5-53)(53.5-45)(53.5-9)}}{9}\normalsize = 22.3531559}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 53, 45 и 9 равна 4.47063119
Высота треугольника опущенная с вершины A на сторону BC со сторонами 53, 45 и 9 равна 3.79581893
Высота треугольника опущенная с вершины C на сторону AB со сторонами 53, 45 и 9 равна 22.3531559
Ссылка на результат
?n1=53&n2=45&n3=9
Найти высоту треугольника со сторонами 114, 105 и 36
Найти высоту треугольника со сторонами 100, 82 и 64
Найти высоту треугольника со сторонами 145, 125 и 43
Найти высоту треугольника со сторонами 143, 103 и 83
Найти высоту треугольника со сторонами 28, 28 и 25
Найти высоту треугольника со сторонами 126, 120 и 12
Найти высоту треугольника со сторонами 100, 82 и 64
Найти высоту треугольника со сторонами 145, 125 и 43
Найти высоту треугольника со сторонами 143, 103 и 83
Найти высоту треугольника со сторонами 28, 28 и 25
Найти высоту треугольника со сторонами 126, 120 и 12