Рассчитать высоту треугольника со сторонами 53, 47 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{53 + 47 + 8}{2}} \normalsize = 54}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54(54-53)(54-47)(54-8)}}{47}\normalsize = 5.61121557}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54(54-53)(54-47)(54-8)}}{53}\normalsize = 4.97598362}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54(54-53)(54-47)(54-8)}}{8}\normalsize = 32.9658915}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 53, 47 и 8 равна 5.61121557
Высота треугольника опущенная с вершины A на сторону BC со сторонами 53, 47 и 8 равна 4.97598362
Высота треугольника опущенная с вершины C на сторону AB со сторонами 53, 47 и 8 равна 32.9658915
Ссылка на результат
?n1=53&n2=47&n3=8
Найти высоту треугольника со сторонами 144, 143 и 70
Найти высоту треугольника со сторонами 102, 92 и 18
Найти высоту треугольника со сторонами 48, 38 и 22
Найти высоту треугольника со сторонами 99, 85 и 59
Найти высоту треугольника со сторонами 150, 130 и 36
Найти высоту треугольника со сторонами 113, 71 и 62
Найти высоту треугольника со сторонами 102, 92 и 18
Найти высоту треугольника со сторонами 48, 38 и 22
Найти высоту треугольника со сторонами 99, 85 и 59
Найти высоту треугольника со сторонами 150, 130 и 36
Найти высоту треугольника со сторонами 113, 71 и 62