Рассчитать высоту треугольника со сторонами 54, 36 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{54 + 36 + 35}{2}} \normalsize = 62.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{62.5(62.5-54)(62.5-36)(62.5-35)}}{36}\normalsize = 34.567363}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{62.5(62.5-54)(62.5-36)(62.5-35)}}{54}\normalsize = 23.0449087}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{62.5(62.5-54)(62.5-36)(62.5-35)}}{35}\normalsize = 35.5550019}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 36 и 35 равна 34.567363
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 36 и 35 равна 23.0449087
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 36 и 35 равна 35.5550019
Ссылка на результат
?n1=54&n2=36&n3=35
Найти высоту треугольника со сторонами 150, 92 и 66
Найти высоту треугольника со сторонами 125, 99 и 79
Найти высоту треугольника со сторонами 145, 90 и 66
Найти высоту треугольника со сторонами 124, 102 и 77
Найти высоту треугольника со сторонами 56, 56 и 38
Найти высоту треугольника со сторонами 90, 88 и 6
Найти высоту треугольника со сторонами 125, 99 и 79
Найти высоту треугольника со сторонами 145, 90 и 66
Найти высоту треугольника со сторонами 124, 102 и 77
Найти высоту треугольника со сторонами 56, 56 и 38
Найти высоту треугольника со сторонами 90, 88 и 6