Рассчитать высоту треугольника со сторонами 54, 46 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{54 + 46 + 30}{2}} \normalsize = 65}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{65(65-54)(65-46)(65-30)}}{46}\normalsize = 29.9803023}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{65(65-54)(65-46)(65-30)}}{54}\normalsize = 25.538776}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{65(65-54)(65-46)(65-30)}}{30}\normalsize = 45.9697968}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 46 и 30 равна 29.9803023
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 46 и 30 равна 25.538776
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 46 и 30 равна 45.9697968
Ссылка на результат
?n1=54&n2=46&n3=30
Найти высоту треугольника со сторонами 50, 35 и 35
Найти высоту треугольника со сторонами 108, 74 и 66
Найти высоту треугольника со сторонами 120, 95 и 37
Найти высоту треугольника со сторонами 133, 113 и 37
Найти высоту треугольника со сторонами 103, 92 и 62
Найти высоту треугольника со сторонами 147, 118 и 66
Найти высоту треугольника со сторонами 108, 74 и 66
Найти высоту треугольника со сторонами 120, 95 и 37
Найти высоту треугольника со сторонами 133, 113 и 37
Найти высоту треугольника со сторонами 103, 92 и 62
Найти высоту треугольника со сторонами 147, 118 и 66