Рассчитать высоту треугольника со сторонами 54, 47 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{54 + 47 + 16}{2}} \normalsize = 58.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58.5(58.5-54)(58.5-47)(58.5-16)}}{47}\normalsize = 15.2636962}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58.5(58.5-54)(58.5-47)(58.5-16)}}{54}\normalsize = 13.2850689}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58.5(58.5-54)(58.5-47)(58.5-16)}}{16}\normalsize = 44.8371075}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 47 и 16 равна 15.2636962
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 47 и 16 равна 13.2850689
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 47 и 16 равна 44.8371075
Ссылка на результат
?n1=54&n2=47&n3=16
Найти высоту треугольника со сторонами 96, 81 и 76
Найти высоту треугольника со сторонами 107, 90 и 38
Найти высоту треугольника со сторонами 70, 48 и 36
Найти высоту треугольника со сторонами 142, 97 и 55
Найти высоту треугольника со сторонами 117, 80 и 79
Найти высоту треугольника со сторонами 67, 64 и 20
Найти высоту треугольника со сторонами 107, 90 и 38
Найти высоту треугольника со сторонами 70, 48 и 36
Найти высоту треугольника со сторонами 142, 97 и 55
Найти высоту треугольника со сторонами 117, 80 и 79
Найти высоту треугольника со сторонами 67, 64 и 20