Рассчитать высоту треугольника со сторонами 54, 53 и 3
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{54 + 53 + 3}{2}} \normalsize = 55}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{55(55-54)(55-53)(55-3)}}{53}\normalsize = 2.85398799}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{55(55-54)(55-53)(55-3)}}{54}\normalsize = 2.80113636}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{55(55-54)(55-53)(55-3)}}{3}\normalsize = 50.4204544}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 53 и 3 равна 2.85398799
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 53 и 3 равна 2.80113636
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 53 и 3 равна 50.4204544
Ссылка на результат
?n1=54&n2=53&n3=3
Найти высоту треугольника со сторонами 50, 44 и 35
Найти высоту треугольника со сторонами 117, 100 и 21
Найти высоту треугольника со сторонами 67, 54 и 20
Найти высоту треугольника со сторонами 141, 141 и 19
Найти высоту треугольника со сторонами 90, 87 и 61
Найти высоту треугольника со сторонами 140, 115 и 28
Найти высоту треугольника со сторонами 117, 100 и 21
Найти высоту треугольника со сторонами 67, 54 и 20
Найти высоту треугольника со сторонами 141, 141 и 19
Найти высоту треугольника со сторонами 90, 87 и 61
Найти высоту треугольника со сторонами 140, 115 и 28