Рассчитать высоту треугольника со сторонами 54, 53 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{54 + 53 + 42}{2}} \normalsize = 74.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74.5(74.5-54)(74.5-53)(74.5-42)}}{53}\normalsize = 38.9825373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74.5(74.5-54)(74.5-53)(74.5-42)}}{54}\normalsize = 38.2606385}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74.5(74.5-54)(74.5-53)(74.5-42)}}{42}\normalsize = 49.1922495}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 54, 53 и 42 равна 38.9825373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 54, 53 и 42 равна 38.2606385
Высота треугольника опущенная с вершины C на сторону AB со сторонами 54, 53 и 42 равна 49.1922495
Ссылка на результат
?n1=54&n2=53&n3=42
Найти высоту треугольника со сторонами 137, 97 и 75
Найти высоту треугольника со сторонами 107, 70 и 62
Найти высоту треугольника со сторонами 143, 128 и 122
Найти высоту треугольника со сторонами 121, 119 и 101
Найти высоту треугольника со сторонами 128, 105 и 79
Найти высоту треугольника со сторонами 148, 108 и 93
Найти высоту треугольника со сторонами 107, 70 и 62
Найти высоту треугольника со сторонами 143, 128 и 122
Найти высоту треугольника со сторонами 121, 119 и 101
Найти высоту треугольника со сторонами 128, 105 и 79
Найти высоту треугольника со сторонами 148, 108 и 93