Рассчитать высоту треугольника со сторонами 55, 41 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 41 + 18}{2}} \normalsize = 57}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57(57-55)(57-41)(57-18)}}{41}\normalsize = 13.0104063}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57(57-55)(57-41)(57-18)}}{55}\normalsize = 9.69866652}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57(57-55)(57-41)(57-18)}}{18}\normalsize = 29.6348144}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 41 и 18 равна 13.0104063
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 41 и 18 равна 9.69866652
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 41 и 18 равна 29.6348144
Ссылка на результат
?n1=55&n2=41&n3=18
Найти высоту треугольника со сторонами 93, 88 и 74
Найти высоту треугольника со сторонами 112, 105 и 21
Найти высоту треугольника со сторонами 142, 114 и 106
Найти высоту треугольника со сторонами 135, 117 и 55
Найти высоту треугольника со сторонами 134, 112 и 70
Найти высоту треугольника со сторонами 129, 124 и 112
Найти высоту треугольника со сторонами 112, 105 и 21
Найти высоту треугольника со сторонами 142, 114 и 106
Найти высоту треугольника со сторонами 135, 117 и 55
Найти высоту треугольника со сторонами 134, 112 и 70
Найти высоту треугольника со сторонами 129, 124 и 112